Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Epilepsy Behav ; 154: 109735, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522192

RESUMO

Seizure events can manifest as transient disruptions in the control of movements which may be organized in distinct behavioral sequences, accompanied or not by other observable features such as altered facial expressions. The analysis of these clinical signs, referred to as semiology, is subject to observer variations when specialists evaluate video-recorded events in the clinical setting. To enhance the accuracy and consistency of evaluations, computer-aided video analysis of seizures has emerged as a natural avenue. In the field of medical applications, deep learning and computer vision approaches have driven substantial advancements. Historically, these approaches have been used for disease detection, classification, and prediction using diagnostic data; however, there has been limited exploration of their application in evaluating video-based motion detection in the clinical epileptology setting. While vision-based technologies do not aim to replace clinical expertise, they can significantly contribute to medical decision-making and patient care by providing quantitative evidence and decision support. Behavior monitoring tools offer several advantages such as providing objective information, detecting challenging-to-observe events, reducing documentation efforts, and extending assessment capabilities to areas with limited expertise. The main applications of these could be (1) improved seizure detection methods; (2) refined semiology analysis for predicting seizure type and cerebral localization. In this paper, we detail the foundation technologies used in vision-based systems in the analysis of seizure videos, highlighting their success in semiology detection and analysis, focusing on work published in the last 7 years. We systematically present these methods and indicate how the adoption of deep learning for the analysis of video recordings of seizures could be approached. Additionally, we illustrate how existing technologies can be interconnected through an integrated system for video-based semiology analysis. Each module can be customized and improved by adapting more accurate and robust deep learning approaches as these evolve. Finally, we discuss challenges and research directions for future studies.


Assuntos
Aprendizado Profundo , Convulsões , Gravação em Vídeo , Humanos , Convulsões/diagnóstico , Convulsões/fisiopatologia , Gravação em Vídeo/métodos , Eletroencefalografia/métodos
2.
Heliyon ; 9(6): e16763, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303525

RESUMO

Advances in machine learning and contactless sensors have enabled the understanding complex human behaviors in a healthcare setting. In particular, several deep learning systems have been introduced to enable comprehensive analysis of neuro-developmental conditions such as Autism Spectrum Disorder (ASD). This condition affects children from their early developmental stages onwards, and diagnosis relies entirely on observing the child's behavior and detecting behavioral cues. However, the diagnosis process is time-consuming as it requires long-term behavior observation, and the scarce availability of specialists. We demonstrate the effect of a region-based computer vision system to help clinicians and parents analyze a child's behavior. For this purpose, we adopt and enhance a dataset for analyzing autism-related actions using videos of children captured in uncontrolled environments (e.g. videos collected with consumer-grade cameras, in varied environments). The data is pre-processed by detecting the target child in the video to reduce the impact of background noise. Motivated by the effectiveness of temporal convolutional models, we propose both light-weight and conventional models capable of extracting action features from video frames and classifying autism-related behaviors by analyzing the relationships between frames in a video. By extensively evaluating feature extraction and learning strategies, we demonstrate that the highest performance is attained through the use of an Inflated 3D Convnet and Multi-Stage Temporal Convolutional Network. Our model achieved a Weighted F1-score of 0.83 for the classification of the three autism-related actions. We also propose a light-weight solution by employing the ESNet backbone with the same action recognition model, achieving a competitive 0.71 Weighted F1-score, and enabling potential deployment on embedded systems. Experimental results demonstrate the ability of our proposed models to recognize autism-related actions from videos captured in an uncontrolled environment, and thus can assist clinicians in analyzing ASD.

3.
IEEE J Biomed Health Inform ; 27(2): 968-979, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36409802

RESUMO

Generative Adversarial Networks (GANs) are a revolutionary innovation in machine learning that enables the generation of artificial data. Artificial data synthesis is valuable especially in the medical field where it is difficult to collect and annotate real data due to privacy issues, limited access to experts, and cost. While adversarial training has led to significant breakthroughs in the computer vision field, biomedical research has not yet fully exploited the capabilities of generative models for data generation, and for more complex tasks such as biosignal modality transfer. We present a broad analysis on adversarial learning on biosignal data. Our study is the first in the machine learning community to focus on synthesizing 1D biosignal data using adversarial models. We consider three types of deep generative adversarial networks: a classical GAN, an adversarial AE, and a modality transfer GAN; individually designed for biosignal synthesis and modality transfer purposes. We evaluate these methods on multiple datasets for different biosignal modalites, including phonocardiogram (PCG), electrocardiogram (ECG), vectorcardiogram and 12-lead electrocardiogram. We follow subject-independent evaluation protocols, by evaluating the proposed models' performance on completely unseen data to demonstrate generalizability. We achieve superior results in generating biosignals, specifically in conditional generation, by synthesizing realistic samples while preserving domain-relevant characteristics. We also demonstrate insightful results in biosignal modality transfer that can generate expanded representations from fewer input-leads, ultimately making the clinical monitoring setting more convenient for the patient. Furthermore our longer duration ECGs generated, maintain clear ECG rhythmic regions, which has been proven using ad-hoc segmentation models.


Assuntos
Pesquisa Biomédica , Aprendizado Profundo , Humanos , Eletrocardiografia , Aprendizado de Máquina , Privacidade , Processamento de Imagem Assistida por Computador
4.
IEEE J Biomed Health Inform ; 26(7): 2898-2908, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35061595

RESUMO

OBJECTIVE: This paper proposes a novel framework for lung sound event detection, segmenting continuous lung sound recordings into discrete events and performing recognition of each event. METHODS: We propose the use of a multi-branch TCN architecture and exploit a novel fusion strategy to combine the resultant features from these branches. This not only allows the network to retain the most salient information across different temporal granularities and disregards irrelevant information, but also allows our network to process recordings of arbitrary length. RESULTS: The proposed method is evaluated on multiple public and in-house benchmarks, containing irregular and noisy recordings of the respiratory auscultation process for the identification of auscultation events including inhalation, crackles, and rhonchi. Moreover, we provide an end-to-end model interpretation pipeline. CONCLUSION: Our analysis of different feature fusion strategies shows that the proposed feature concatenation method leads to better suppression of non-informative features, which drastically reduces the classifier overhead resulting in a robust lightweight network. SIGNIFICANCE: Lung sound event detection is a primary diagnostic step for numerous respiratory diseases. The proposed method provides a cost-effective and efficient alternative to exhaustive manual segmentation, and provides more accurate segmentation than existing methods. The end-to-end model interpretability helps to build the required trust in the system for use in clinical settings.


Assuntos
Sons Respiratórios , Gravação de Som , Algoritmos , Auscultação/métodos , Humanos , Pulmão
5.
IEEE J Biomed Health Inform ; 26(2): 527-538, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34314363

RESUMO

Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs) that can anticipate an epileptic seizure by differentiating between the pre-ictal and interictal stages of the subject's brain. Despite having the appearance of a typical anomaly detection task, this problem is complicated by subject-specific characteristics in EEG data. Therefore, studies that investigate seizure prediction widely employ subject-specific models. However, this approach is not suitable in situations where a target subject has limited (or no) data for training. Subject-independent models can address this issue by learning to predict seizures from multiple subjects, and therefore are of greater value in practice. In this study, we propose a subject-independent seizure predictor using Geometric Deep Learning (GDL). In the first stage of our GDL-based method we use graphs derived from physical connections in the EEG grid. We subsequently seek to synthesize subject-specific graphs using deep learning. The models proposed in both stages achieve state-of-the-art performance using a one-hour early seizure prediction window on two benchmark datasets (CHB-MIT-EEG: 95.38% with 23 subjects and Siena-EEG: 96.05% with 15 subjects). To the best of our knowledge, this is the first study that proposes synthesizing subject-specific graphs for seizure prediction. Furthermore, through model interpretation we outline how this method can potentially contribute towards Scalp EEG-based seizure localization.


Assuntos
Aprendizado Profundo , Algoritmos , Eletroencefalografia/métodos , Humanos , Couro Cabeludo , Convulsões/diagnóstico
6.
Comput Med Imaging Graph ; 95: 102027, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34959100

RESUMO

With the remarkable success of representation learning for prediction problems, we have witnessed a rapid expansion of the use of machine learning and deep learning for the analysis of digital pathology and biopsy image patches. However, learning over patch-wise features using convolutional neural networks limits the ability of the model to capture global contextual information and comprehensively model tissue composition. The phenotypical and topological distribution of constituent histological entities play a critical role in tissue diagnosis. As such, graph data representations and deep learning have attracted significant attention for encoding tissue representations, and capturing intra- and inter- entity level interactions. In this review, we provide a conceptual grounding for graph analytics in digital pathology, including entity-graph construction and graph architectures, and present their current success for tumor localization and classification, tumor invasion and staging, image retrieval, and survival prediction. We provide an overview of these methods in a systematic manner organized by the graph representation of the input image, scale, and organ on which they operate. We also outline the limitations of existing techniques, and suggest potential future research directions in this domain.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2601-2604, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891786

RESUMO

Inpatient falls are a serious safety issue in hospitals and healthcare facilities. Recent advances in video analytics for patient monitoring provide a non-intrusive avenue to reduce this risk through continuous activity monitoring. However, in- bed fall risk assessment systems have received less attention in the literature. The majority of prior studies have focused on fall event detection, and do not consider the circumstances that may indicate an imminent inpatient fall. Here, we propose a video-based system that can monitor the risk of a patient falling, and alert staff of unsafe behaviour to help prevent falls before they occur. We propose an approach that leverages recent advances in human localisation and skeleton pose estimation to extract spatial features from video frames recorded in a simulated environment. We demonstrate that body positions can be effectively recognised and provide useful evidence for fall risk assessment. This work highlights the benefits of video-based models for analysing behaviours of interest, and demonstrates how such a system could enable sufficient lead time for healthcare professionals to respond and address patient needs, which is necessary for the development of fall intervention programs.


Assuntos
Acidentes por Quedas , Pacientes Internados , Acidentes por Quedas/prevenção & controle , Hospitais , Humanos , Monitorização Fisiológica , Medição de Risco
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3613-3616, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892020

RESUMO

Recent advances in deep learning have enabled the development of automated frameworks for analysing medical images and signals, including analysis of cervical cancer. Many previous works focus on the analysis of isolated cervical cells, or do not offer explainable methods to explore and understand how the proposed models reach their classification decisions on multi-cell images which contain multiple cells. Here, we evaluate various state-of-the-art deep learning models and attention-based frameworks to classify multiple cervical cells. Our aim is to provide interpretable deep learning models by comparing their explainability through the gradients visualization. We demonstrate the importance of using images that contain multiple cells over using isolated single-cell images. We show the effectiveness of the residual channel attention model for extracting important features from a group of cells, and demonstrate this model's efficiency for multiple cervical cells classification. This work highlights the benefits of attention networks to exploit relations and distributions within multi-cell images for cervical cancer analysis. Such an approach can assist clinicians in understanding a model's prediction by providing interpretable results.


Assuntos
Redes Neurais de Computação , Neoplasias do Colo do Útero , Feminino , Humanos
9.
IEEE Trans Image Process ; 30: 7689-7701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34478365

RESUMO

Gesture recognition is a much studied research area which has myriad real-world applications including robotics and human-machine interaction. Current gesture recognition methods have focused on recognising isolated gestures, and existing continuous gesture recognition methods are limited to two-stage approaches where independent models are required for detection and classification, with the performance of the latter being constrained by detection performance. In contrast, we introduce a single-stage continuous gesture recognition framework, called Temporal Multi-Modal Fusion (TMMF), that can detect and classify multiple gestures in a video via a single model. This approach learns the natural transitions between gestures and non-gestures without the need for a pre-processing segmentation step to detect individual gestures. To achieve this, we introduce a multi-modal fusion mechanism to support the integration of important information that flows from multi-modal inputs, and is scalable to any number of modes. Additionally, we propose Unimodal Feature Mapping (UFM) and Multi-modal Feature Mapping (MFM) models to map uni-modal features and the fused multi-modal features respectively. To further enhance performance, we propose a mid-point based loss function that encourages smooth alignment between the ground truth and the prediction, helping the model to learn natural gesture transitions. We demonstrate the utility of our proposed framework, which can handle variable-length input videos, and outperforms the state-of-the-art on three challenging datasets: EgoGesture, IPN hand and ChaLearn LAP Continuous Gesture Dataset (ConGD). Furthermore, ablation experiments show the importance of different components of the proposed framework.


Assuntos
Gestos , Reconhecimento Automatizado de Padrão , Algoritmos , Mãos , Humanos
10.
Sensors (Basel) ; 21(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34300498

RESUMO

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered, which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interacting nodes connected by edges whose weights can be determined by either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure, and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.


Assuntos
Aprendizado Profundo , Atenção , Aprendizado de Máquina , Redes Neurais de Computação
11.
Ecol Evol ; 11(11): 6649-6656, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141247

RESUMO

Drones and machine learning-based automated detection methods are being used by ecologists to conduct wildlife surveys with increasing frequency. When traditional survey methods have been evaluated, a range of factors have been found to influence detection probabilities, including individual differences among conspecific animals, which can thus introduce biases into survey counts. There has been no such evaluation of drone-based surveys using automated detection in a natural setting. This is important to establish since any biases in counts made using these methods will need to be accounted for, to provide accurate data and improve decision-making for threatened species. In this study, a rare opportunity to survey a ground-truthed, individually marked population of 48 koalas in their natural habitat allowed for direct comparison of the factors impacting detection probability in both ground observation and drone surveys with manual and automated detection. We found that sex and host tree preferences impacted detection in ground surveys and in manual analysis of drone imagery with female koalas likely to be under-represented, and koalas higher in taller trees detected less frequently when present. Tree species composition of a forest stand also impacted on detections. In contrast, none of these factors impacted on automated detection. This suggests that the combination of drone-captured imagery and machine learning does not suffer from the same biases that affect conventional ground surveys. This provides further evidence that drones and machine learning are promising tools for gathering reliable detection data to better inform the management of threatened populations.

12.
IEEE J Biomed Health Inform ; 25(6): 2162-2171, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32997637

RESUMO

Traditionally, abnormal heart sound classification is framed as a three-stage process. The first stage involves segmenting the phonocardiogram to detect fundamental heart sounds; after which features are extracted and classification is performed. Some researchers in the field argue the segmentation step is an unwanted computational burden, whereas others embrace it as a prior step to feature extraction. When comparing accuracies achieved by studies that have segmented heart sounds before analysis with those who have overlooked that step, the question of whether to segment heart sounds before feature extraction is still open. In this study, we explicitly examine the importance of heart sound segmentation as a prior step for heart sound classification, and then seek to apply the obtained insights to propose a robust classifier for abnormal heart sound detection. Furthermore, recognizing the pressing need for explainable Artificial Intelligence (AI) models in the medical domain, we also unveil hidden representations learned by the classifier using model interpretation techniques. Experimental results demonstrate that the segmentation which can be learned by the model plays an essential role in abnormal heart sound classification. Our new classifier is also shown to be robust, stable and most importantly, explainable, with an accuracy of almost 100% on the widely used PhysioNet dataset.


Assuntos
Aprendizado Profundo , Processamento de Sinais Assistido por Computador , Algoritmos , Inteligência Artificial , Fonocardiografia
13.
IEEE J Biomed Health Inform ; 25(1): 69-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32310808

RESUMO

The prospective identification of children likely to develop schizophrenia is a vital tool to support early interventions that can mitigate the risk of progression to clinical psychosis. Electroencephalographic (EEG) patterns from brain activity and deep learning techniques are valuable resources in achieving this identification. We propose automated techniques that can process raw EEG waveforms to identify children who may have an increased risk of schizophrenia compared to typically developing children. We also analyse abnormal features that remain during developmental follow-up over a period of   âˆ¼ 4 years in children with a vulnerability to schizophrenia initially assessed when aged 9 to 12 years. EEG data from participants were captured during the recording of a passive auditory oddball paradigm. We undertake a holistic study to identify brain abnormalities, first by exploring traditional machine learning algorithms using classification methods applied to hand-engineered features (event-related potential components). Then, we compare the performance of these methods with end-to-end deep learning techniques applied to raw data. We demonstrate via average cross-validation performance measures that recurrent deep convolutional neural networks can outperform traditional machine learning methods for sequence modeling. We illustrate the intuitive salient information of the model with the location of the most relevant attributes of a post-stimulus window. This baseline identification system in the area of mental illness supports the evidence of developmental and disease effects in a pre-prodromal phase of psychosis. These results reinforce the benefits of deep learning to support psychiatric classification and neuroscientific research more broadly.


Assuntos
Aprendizado Profundo , Esquizofrenia , Criança , Eletroencefalografia , Humanos , Redes Neurais de Computação , Estudos Prospectivos , Esquizofrenia/diagnóstico
14.
IEEE Trans Biomed Eng ; 68(6): 1978-1989, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33338009

RESUMO

OBJECTIVE: When training machine learning models, we often assume that the training data and evaluation data are sampled from the same distribution. However, this assumption is violated when the model is evaluated on another unseen but similar database, even if that database contains the same classes. This problem is caused by domain-shift and can be solved using two approaches: domain adaptation and domain generalization. Simply, domain adaptation methods can access data from unseen domains during training; whereas in domain generalization, the unseen data is not available during training. Hence, domain generalization concerns models that perform well on inaccessible, domain-shifted data. METHOD: Our proposed domain generalization method represents an unseen domain using a set of known basis domains, afterwhich we classify the unseen domain using classifier fusion. To demonstrate our system, we employ a collection of heart sound databases that contain normal and abnormal sounds (classes). RESULTS: Our proposed classifier fusion method achieves accuracy gains of up to 16% for four completely unseen domains. CONCLUSION: Recognizing the complexity induced by the inherent temporal nature of biosignal data, the two-stage method proposed in this study is able to effectively simplify the whole process of domain generalization while demonstrating good results on unseen domains and the adopted basis domains. SIGNIFICANCE: To our best knowledge, this is the first study that investigates domain generalization for biosignal data. Our proposed learning strategy can be used to effectively learn domain-relevant features while being aware of the class differences in the data.


Assuntos
Ruídos Cardíacos , Aprendizado de Máquina , Bases de Dados Factuais
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 184-187, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33017960

RESUMO

Recent advances in deep learning have enabled the development of automated frameworks for analysing medical images and signals. For analysis of physiological recordings, models based on temporal convolutional networks and recurrent neural networks have demonstrated encouraging results and an ability to capture complex patterns and dependencies in the data. However, representations that capture the entirety of the raw signal are suboptimal as not all portions of the signal are equally important. As such, attention mechanisms are proposed to divert focus to regions of interest, reducing computational cost and enhancing accuracy. Here, we evaluate attention-based frameworks for the classification of physiological signals in different clinical domains. We evaluated our methodology on three classification scenarios: neurogenerative disorders, neurological status and seizure type. We demonstrate that attention networks can outperform traditional deep learning models for sequence modelling by identifying the most relevant attributes of an input signal for decision making. This work highlights the benefits of attention-based models for analysing raw data in the field of biomedical research.


Assuntos
Atenção , Redes Neurais de Computação , Bases de Dados Genéticas , Humanos , Convulsões
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 569-575, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018053

RESUMO

Classification of seizure type is a key step in the clinical process for evaluating an individual who presents with seizures. It determines the course of clinical diagnosis and treatment, and its impact stretches beyond the clinical domain to epilepsy research and the development of novel therapies. Automated identification of seizure type may facilitate understanding of the disease, and seizure detection and prediction have been the focus of recent research that has sought to exploit the benefits of machine learning and deep learning architectures. Nevertheless, there is not yet a definitive solution for automating the classification of seizure type, a task that must currently be performed by an expert epileptologist. Inspired by recent advances in neural memory networks (NMNs), we introduce a novel approach for the classification of seizure type using electrophysiological data. We first explore the performance of traditional deep learning techniques which use convolutional and recurrent neural networks, and enhance these architectures by using external memory modules with trainable neural plasticity. We show that our model achieves a state-of-the-art weighted F1 score of 0.945 for seizure type classification on the TUH EEG Seizure Corpus with the IBM TUSZ preprocessed data. This work highlights the potential of neural memory networks to support the field of epilepsy research, along with biomedical research and signal analysis more broadly.


Assuntos
Eletroencefalografia , Epilepsia , Epilepsia/diagnóstico , Humanos , Memória , Redes Neurais de Computação , Convulsões/diagnóstico
17.
Ecol Evol ; 10(15): 8176-8185, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32788970

RESUMO

Reliable estimates of abundance are critical in effectively managing threatened species, but the feasibility of integrating data from wildlife surveys completed using advanced technologies such as remotely piloted aircraft systems (RPAS) and machine learning into abundance estimation methods such as N-mixture modeling is largely unknown due to the unique sources of detection errors associated with these technologies.We evaluated two modeling approaches for estimating the abundance of koalas detected automatically in RPAS imagery: (a) a generalized N-mixture model and (b) a modified Horvitz-Thompson (H-T) estimator method combining generalized linear models and generalized additive models for overall probability of detection, false detection, and duplicate detection. The final estimates from each model were compared to the true number of koalas present as determined by telemetry-assisted ground surveys.The modified H-T estimator approach performed best, with the true count of koalas captured within the 95% confidence intervals around the abundance estimates in all 4 surveys in the testing dataset (n = 138 detected objects), a particularly strong result given the difficulty in attaining accuracy found with previous methods.The results suggested that N-mixture models in their current form may not be the most appropriate approach to estimating the abundance of wildlife detected in RPAS surveys with automated detection, and accurate estimates could be made with approaches that account for spurious detections.

18.
Neural Netw ; 127: 67-81, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32334342

RESUMO

In the domain of machine learning, Neural Memory Networks (NMNs) have recently achieved impressive results in a variety of application areas including visual question answering, trajectory prediction, object tracking, and language modelling. However, we observe that the attention based knowledge retrieval mechanisms used in current NMNs restrict them from achieving their full potential as the attention process retrieves information based on a set of static connection weights. This is suboptimal in a setting where there are vast differences among samples in the data domain; such as anomaly detection where there is no consistent criteria for what constitutes an anomaly. In this paper, we propose a plastic neural memory access mechanism which exploits both static and dynamic connection weights in the memory read, write and output generation procedures. We demonstrate the effectiveness and flexibility of the proposed memory model in three challenging anomaly detection tasks in the medical domain: abnormal EEG identification, MRI tumour type classification and schizophrenia risk detection in children. In all settings, the proposed approach outperforms the current state-of-the-art. Furthermore, we perform an in-depth analysis demonstrating the utility of neural plasticity for the knowledge retrieval process and provide evidence on how the proposed memory model generates sparse yet informative memory outputs.


Assuntos
Eletroencefalografia/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Plasticidade Neuronal , Atenção/fisiologia , Neoplasias Encefálicas/diagnóstico por imagem , Bases de Dados Factuais/tendências , Eletroencefalografia/tendências , Humanos , Aprendizado de Máquina/tendências , Imageamento por Ressonância Magnética/tendências , Memória/fisiologia , Plasticidade Neuronal/fisiologia
19.
IEEE J Biomed Health Inform ; 24(6): 1601-1609, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31670683

RESUMO

OBJECTIVE: This paper proposes a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states, exploiting the temporal evolution of the PCG as well as considering the salient information that it provides for the detection of the heart state. METHODS: We propose the use of recurrent neural networks and exploit recent advancements in attention based learning to segment the PCG signal. This allows the network to identify the most salient aspects of the signal and disregard uninformative information. RESULTS: The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings. Furthermore, we empirically analyse different feature combinations including envelop features, wavelet and Mel Frequency Cepstral Coefficients (MFCC), and provide quantitative measurements that explore the importance of different features in the proposed approach. CONCLUSION: We demonstrate that a recurrent neural network coupled with attention mechanisms can effectively learn from irregular and noisy PCG recordings. Our analysis of different feature combinations shows that MFCC features and their derivatives offer the best performance compared to classical wavelet and envelop features. SIGNIFICANCE: Heart sound segmentation is a crucial pre-processing step for many diagnostic applications. The proposed method provides a cost effective alternative to labour extensive manual segmentation, and provides a more accurate segmentation than existing methods. As such, it can improve the performance of further analysis including the detection of murmurs and ejection clicks. The proposed method is also applicable for detection and segmentation of other one dimensional biomedical signals.


Assuntos
Ruídos Cardíacos/fisiologia , Redes Neurais de Computação , Fonocardiografia/métodos , Processamento de Sinais Assistido por Computador , Animais , Aprendizado Profundo , Feminino , Humanos , Masculino , Fonocardiografia/classificação
20.
Sci Rep ; 9(1): 3208, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824795

RESUMO

Effective wildlife management relies on the accurate and precise detection of individual animals. These can be challenging data to collect for many cryptic species, particularly those that live in complex structural environments. This study introduces a new automated method for detection using published object detection algorithms to detect their heat signatures in RPAS-derived thermal imaging. As an initial case study we used this new approach to detect koalas (Phascolarctus cinereus), and validated the approach using ground surveys of tracked radio-collared koalas in Petrie, Queensland. The automated method yielded a higher probability of detection (68-100%), higher precision (43-71%), lower root mean square error (RMSE), and lower mean absolute error (MAE) than manual assessment of the RPAS-derived thermal imagery in a comparable amount of time. This new approach allows for more reliable, less invasive detection of koalas in their natural habitat. This new detection methodology has great potential to inform and improve management decisions for threatened species, and other difficult to survey species.


Assuntos
Aprendizado de Máquina , Reconhecimento Automatizado de Padrão , Phascolarctidae/fisiologia , Aeronaves , Algoritmos , Animais , Automação , Processamento de Imagem Assistida por Computador , Probabilidade , Tecnologia de Sensoriamento Remoto , Inquéritos e Questionários , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...